

10Tec hTooltip

version 1.1

Manual

© 2003-2021 10Tec Company

https://10tec.com/

https://10tec.com/

10Tec hTooltip 1.1 Manual -1- 2021-Nov-16

Contents

Contents .. 1

Introduction .. 2

Adding hTooltip to Your Project ... 3

Visual Basic and VBA... 3
Other development environments .. 3

The Basics ... 5

Some definitions... 5
Creating and displaying tooltips .. 5

Sample #1: Creating a pop-up balloon tooltip for a command button.. 5
Sample #2: Using a display-on-demand tooltip for a text box ... 6

CTooltip's Members .. 8

Tooltip properties ... 8
Appearance properties .. 8
Behavior properties ... 9
Information properties ... 10

Tooltip methods.. 10
The Create* methods .. 10
The Destroy method .. 11
The Show method ... 11
The Hide method .. 12
The SetAllMargins method .. 12
The Supports function ... 12
The InitWithPattern method ... 12
The ShowAboutBox method .. 13

Tooltip events ... 13
The MouseEnter and MouseLeave events ... 13

Advanced Topics ... 15

Multiline tooltips.. 15
Using tab stops .. 15
Setting tooltip font .. 15
Using the MouseEnter/MouseLeave events ... 16
Creating and displaying tooltips dynamically .. 17

Scenario #1: A huge number of objects ... 17
Scenario #2: Tracking tooltips ... 18

The ScaleMode property .. 20
Setting DelayTime and VisibleTime to system defaults .. 20
Tooltip patterns and the DefaultTooltip global object .. 20
The hTooltip ProgID and late binding ... 22

Compatibility Info ... 23

Windows visual styles support .. 23
hTooltip features and the Windows Common Controls library .. 23
Balloon tips availability ... 24

Known Problems and Limitations .. 25

10Tec hTooltip 1.1 Manual -2- 2021-Nov-16

Introduction
The hTooltip component is an ActiveX DLL that provides you with a set of the objects you can use to create
native Windows tooltips in your Win32 applications.

The name 'hTooltip' itself means 'handy tooltip', and the main goal of this component is to give you a handy
tool you can use to create system-like tooltips with different options and features in your apps.

With hTooltip you can use the most important features of native Windows tooltips, such as:

• The standard rectangular and balloon styles.

• Tooltips can have a title and one of the predefined system icons.

• Displaying tooltips on demand at a specified point on the screen.

• The ability to adjust the colors of the tooltip window and its text.

• You can set the delay time and visible time of your tooltips.

In addition to these standard system features, hTooltip provides you with the following features which can
lighten your work:

• The tooltip object raises the MouseEnter and MouseLeave events for the area it is attached to.

• hTooltip can be used to create tooltips for controls that do not have their own window handle (also
known as 'windowless controls'). These are the Label, Shape and Image controls in Visual Basic 6.

• You can specify a rectangular area inside a control for which the tooltip should be displayed.

• hTooltip implements the CreateForVBCtrl method you can use to attach a tooltip to any Visual

Basic 6 intrinsic control with one statement.

hTooltip can be used in any version of Windows, both client and server editions are supported. hTooltip
automatically uses the visual effects available in latest versions of the OS.

The component was designed originally for Visual Basic 6, but it can be used in development environments
that can work with COM objects, including Visual Basic for Applications in Microsoft Office, Microsoft Visual
FoxPro, Borland Delphi, and the .NET Framework.

10Tec hTooltip 1.1 Manual -3- 2021-Nov-16

Adding hTooltip to Your Project

Visual Basic and VBA

hTooltip is an ActiveX DLL and can be added to your project like any other ActiveX DLL in the Project

References dialog in VB6 IDE or VBA IDE in Microsoft Office. To open this dialog, select the References… item
in the Project menu in VB6 or in the Tools menu in VBA. In the Project References dialog, check the '10Tec
hTooltip Component 1.1' item to add the reference to the hTooltip library to your project:

If the hTooltip library is not listed, click the Browse… button and select the hTooltip library DLL
(10Tec_hTooltip_110.dll) in the Add Reference dialog.

Now you can use hTooltip's objects in your code. The IntelliSense feature proves that you are using early
binding in your project:

The CTooltip and CTooltipPattern items are classes from the hTooltip library.

Other development environments

Some development environments let you use COM objects but do not let you add references to ActiveX DLLs.
In this case you can use hTooltip's objects via late binding. Each COM object has its own program identifier or

10Tec hTooltip 1.1 Manual -4- 2021-Nov-16

ProgID, and hTooltip's one is 'hTT110_10Tec'. This lets you create hTooltip's objects by their ProgIDs. For
instance, the core class in the hTooltip library has the name 'CTooltip', and in Visual FoxPro you can create an
instance of this object with the following statement:

objHTT = CREATEOBJECT("hTT110_10Tec.CTooltip")

Note that CreateObject is also an intrinsic function in VB6 and VBA, and you can use it to create the

reference to the instance of the CTooltip class using late binding. For more details, see the topic The hTooltip

ProgID and late binding in this document.

10Tec hTooltip 1.1 Manual -5- 2021-Nov-16

The Basics

Some definitions

The tooltip control (or simply 'tooltip' in the text below) is a pop-up window that displays text and optionally

an icon. The text usually describes a tool, which is either a window, such as a child window or control, or an
application-defined rectangular area within a window's client area. The pop-up window with tooltip text is
called the tooltip window.

In this document we often use the term tooltip object meaning the object in your code the tooltip
functionality is provided with.

Creating and displaying tooltips

The CTooltip class is the core class of the hTooltip component. You deal with it when you create tooltips in

your apps.

To create a tooltip in your app:

1) Create the instance of the CTooltip class.

2) Set the required properties of your tooltip.

3) Create and attach the tooltip window to a control or a rectangular area with one of the Create*

methods.

The tooltip can then be displayed on the screen using one of the following 2 modes:

1. The pop-up mode.

This is the default mode. The tooltip appears automatically, or pops up, when the mouse pointer hovers
over the tool. The tooltip appears near the pointer and disappears when the user clicks a mouse button
or moves the pointer away from the tool.

2. The display-on-demand mode.

The tooltip is displayed on the screen when you invoke the Show method in code. This mode must be

turned on with the DisplayOnDemand property; in this case the tooltip does not pop up automatically

when the mouse pointer hovers over the tool. The coordinates the tooltip is displayed at are also specified
with the Show method.

Sample #1: Creating a pop-up balloon tooltip for a command button

The source code for this section is stored in the Tutorial 1 - 1st balloon tooltip

This sample demonstrates how to create a balloon tooltip and attach it to a command button in a VB6 form.
The result will look like the following:

Create a new exe-application project with one form in VB6 and place the CommandButton control on the

form. Name the button Command1, then declare the variable that will store the reference to the tooltip object
in the form's module:

Tutorials/Tutorial%201%20-%201st%20balloon%20tooltip/

10Tec hTooltip 1.1 Manual -6- 2021-Nov-16

Private objTT As CTooltip

In the Form_Load event sub create the instance of the CTooltip class:

Set objTT = New CTooltip

Then initialize its properties. We will create a balloon tooltip with the text 'My first balloon tooltip':

objTT.Text = "My first balloon tooltip"

objTT.Style = httStyleBalloon

And finally we need to create the real tooltip window for our button Command1:

objTT.CreateForVBCtrl Command1

That's all! When you launch a form and place the mouse pointer over the command button, the tooltip appears.

The full source code looks like the following:

Private objTT As CTooltip

Private Sub Form_Load()

 Set objTT = New CTooltip

 objTT.Text = "My first balloon tooltip"

 objTT.Style = httStyleBalloon

 objTT.CreateForVBCtrl Command1

End Sub

Important! You must declare an instance of the CTooltip class at module level. If you do it inside a

procedure, the tooltip object is released automatically when the procedure finishes and
therefore the tooltip will never appear.

Sample #2: Using a display-on-demand tooltip for a text box

The source code for this section is stored in the Tutorial 2 - Tooltip on demand

In this sample we demonstrate how to emulate a user message with a display-on-demand tooltip.

We will check the password the user entered into the text box, so place a text box and a command button
with their default names Text1 and Command1 on a form. Then change the caption of the button to 'Check'
and set the PasswordChar property of the text box to '*'. We will compare the entered password with the

word 'password' itself when the user presses the Check command button and will display a tooltip-based
message if the user entered an incorrect password:

As always, let's declare the tooltip object at the form's module level:

Tutorials/Tutorial%202%20-%20Tooltip%20on%20demand/

10Tec hTooltip 1.1 Manual -7- 2021-Nov-16

Private objTT As CTooltip

Then create the tooltip with the message text and icon and attach it to the command button. We do it in the
Load event of the form:

Private Sub Form_Load()

 Set objTT = New CTooltip

 With objTT

 .Title = "Did you forget your password?"

 .Text = "Don't rack your brains! Simply type in 'password'."

 .Icon = httIconWarning

 .Style = httStyleBalloon

 .DisplayOnDemand = True

 End With

 objTT.CreateForVBCtrl Text1

End Sub

Finally, add the required validation code to the Click event of the command button:

Private Sub Command1_Click()

 If Text1.Text <> "password" Then

 objTT.Show Text1.Width / 2, Text1.Height * 0.7

 Else

 MsgBox "The password is correct"

 End If

End Sub

When you display a tooltip on demand, you specify the coordinates in the Show method in the Left and Top

properties of the control the tooltip is attached to. The stem of our balloon tooltip starts at that point.

10Tec hTooltip 1.1 Manual -8- 2021-Nov-16

CTooltip's Members

Tooltip properties

The CTooltip class provides you with a set of properties you can use to control your tooltips or get info

about them. These properties can be organized into the following 3 groups:

1) Properties that define the appearance of a tooltip.

2) Properties that control the behavior of the tooltip.

3) Information properties to retrieve some info about a tooltip.

The tables below briefly describe properties in each group.

Appearance properties

Property Type Description Default value

BackColor OLE_COLOR
Gets/sets the background color of the
tooltip.

vbInfoBackground

(&H80000018)

Font StdFont
Contains a font object used to display
the tooltip text.

Nothing (the default

system font is used)

ForeColor OLE_COLOR
Gets/sets the color of the text in the
tooltip window.

vbInfoText

(&H80000017)

Icon EIconType

Gets or sets one of the predefined
system icons displayed in the tooltip's
title:

 - httIconInfo (1)

 - httIconWarning (2)

 - httIconError (3)

no icon - httNoIcon (0)

Note that the tooltip should have a
title in order to display one of these
icons.

httNoIcon (0)

MarginBottom Long

Specifies the bottom margin, in
pixels, between the tooltip window
border and the text contained within
the tooltip window.

0

MarginLeft Long

Specifies the left margin, in pixels,
between the tooltip window border
and the text contained within the
tooltip window.

0

MarginRight Long

Specifies the right margin, in pixels,
between the tooltip window border
and the text contained within the
tooltip window.

0

MarginTop Long

Specifies the top margin, in pixels,
between the tooltip window border
and the text contained within the
tooltip window.

0

10Tec hTooltip 1.1 Manual -9- 2021-Nov-16

MaxWidth Long

Specifies the maximum width, in
pixels, of the tooltip window. If the
tooltip string exceeds the maximum
width, the control breaks the text into
multiple lines, using spaces to

determine line breaks.

2,147,483,647

Style ETooltipStyle

Gets or sets the style of the tooltip.
Accepts the following values from the
ETooltipStyle enumeration:

httStyleStandard (0, normal

rectangular tooltip) or
httStyleBalloon (1, new modern

balloon style)

httStyleStandard (0)

Text String
Gets/sets the text of the tooltip. The
tooltip isn't displayed if this property
is empty.

an empty string

Title String Gets/sets the title of the tooltip. an empty string

Behavior properties

Property Type Description Default value

AppearInInactiveForm Boolean
Specifies whether the tooltip is
displayed when the form is
inactive.

False

Centered Boolean
Specifies whether the tooltip
window is centered below the
tool it is attached to.

False

DelayTime Integer

Gets/sets the length of time, in
milliseconds, the mouse pointer
must remain stationary within
the tool's bounding rectangle

before the tooltip window
appears.

Assign -1 to set to the system
default value.

the double-click time

in the OS (by default
500 ms)

DisplayOnDemand Boolean

Specifies whether the tooltip will
work in the standard pop-up
mode (False) or will be forcibly
displayed with the Show method
(True).

False

MouseEnterOnCreation Boolean

Specifies whether the
MouseEnter event will be

raised automatically when the
tooltip window is created. Set
this property to True if the tooltip
is created when the mouse
pointer is inside the destination
area.

False

10Tec hTooltip 1.1 Manual -10- 2021-Nov-16

ScaleMode EScaleMode

Specifies the measurement unit
for coordinate parameters.
Accepts one of the following
values from the EScaleMode

enumeration: httScaleTwips

(0) or httScalePixels (1).

httScaleTwips (0)

SmartPositioning Boolean

Forces the tooltip window to
adjust its coordinates
automatically when it is
displayed to reveal as much of
the tool's bounding rectangle as
possible.

True

UseFadeEffect Boolean
Specifies whether the tooltip will
use the fade system effect if it is
possible in the current OS.

True

UseSlideEffect Boolean
Specifies whether the tooltip will
use the slide system effect if it is
possible in the current OS.

True

VisibleTime Integer

Gets/sets the length of time, in
milliseconds, the tooltip window
remains visible if the pointer is
stationary within the tool's
bounding rectangle.

Assign -1 to set to the system

default value.

the double-click time
in the OS multiplied by
10 (by default
5000 ms)

Information properties

These properties are read-only.

Property Type Description

IsActive Boolean Indicates whether the tooltip window is visible

IsCreated Boolean
Returns a boolean value which indicates whether the WinAPI tooltip window
is created.

HwndParent Long Returns the WinAPI handle of the window the tooltip is attached to.

HwndTooltip Long Returns the WinAPI handle of the tooltip window itself.

Tooltip methods

The Create* methods

To display a tooltip window, it is not enough to create an instance of the CTooltip class and set the required

properties. You must create the tooltip window itself and attach it to a particular control or an entire window.
One of the Create* methods is used for that.

The first method from the Create* family you generally use for intrinsic VB6 controls is CreateForVBCtrl:

Sub CreateForVBCtrl(_

 ByVal Ctrl As Object _

)

The only parameter it accepts is a reference to the target control.

Pay attention to the fact that this method can be used only for Visual Basic 6 controls, but not for UserForm
controls in VBA or controls in other development environments.

Another method you can use to create a tooltip window is CreateForHwnd:

10Tec hTooltip 1.1 Manual -11- 2021-Nov-16

Sub CreateForHwnd(_

 ByVal Hwnd As Long _

)

It accepts the WinAPI handle of the control or a whole window for which you create the tooltip window. This

approach based on Hwnd is widely used if you create a tooltip window not from VB6 or VBA. It can be also

used in VB6/VBA if you deal with a non-standard control that can return its WinAPI handle.

The last method from this triad is CreateForRect. It is helpful if you need to create a tooltip window not

for an entire window or a control but only for its rectangular part. In this case you specify the coordinates of
that rectangle inside the tool with the specified WinAPI handle:

Sub CreateForRect(_

 ByVal Hwnd As Long, _

 ByVal Left As Long, _

 ByVal Top As Long, _

 ByVal Width As Long, _

 ByVal Height As Long _

)

This feature can be helpful if you want to display a tooltip only when the mouse pointer hovers over a particular

part of the control. For instance, the following statement is used to create a tooltip for a small square area
inside the picture box named Picture1:

objTT.CreateForRect Picture1.hWnd, 0, 0, 90, 90

When you invoke the CreateForVBCtrl method, internally hTooltip invokes the CreateForHwnd or

CreateForRect method. If the specified control has the WinAPI handle (the Hwnd property),

CreateForHwnd is used. Otherwise the method determines the coordinates of the specified control on the

form (or another parent control with WinAPI handle) and invokes the CreateForRect method with the

corresponding parameters.

Caution: If you created the tooltip for a control with the CreateForRect method and the control can

subsequently be resized or moved (for instance, when the form is resized), you need to recreate
the tooltip accordingly to the new coordinates whenever the control is moved or resized. The
same applies to the CreateForVBCtrl method if it was invoked for a windowless control

(without the Hwnd property – such as the Label, Shape or Image controls in Visual Basic).

If a tooltip window was created with the Create* method and is still exists, the IsCreated property returns

True.

The Destroy method

You destroy the tooltip window created with the CTooltip class with this Destroy method:

Sub Destroy()

This method destroys only the tooltip window but not the instance of the CTooltip class you invoke it from.

You can create and attach the same tooltip to another tool with one of the Create* methods again after

you've destroyed the tooltip window with Destroy.

The IsCreated property returns False for the tooltip object after you have issued its Destroy method.

The Show method

You can display a display-on-demand tooltip with the Show method:

10Tec hTooltip 1.1 Manual -12- 2021-Nov-16

Sub Show(_

 ByVal x As Long, _

 ByVal y As Long, _

 Optional ByVal NeverHide As Boolean = False _

)

The tooltip is displayed at the point specified with the x and y coordinates. The tooltip is automatically hidden

after the period of time specified in the VisibleTime property unless you set the NeverHide optional

parameter to True (or simply omit it).

If a tooltip window is already visible when you call the Show method, it remains visible and may be repositioned

to the new location specified by the x and y arguments. This feature is often used to move the tooltip window

when you implement tracking tooltips that trace the mouse pointer movement.

Note that this method works only for display-on-demand tooltips (the DisplayOnDemand property is set to

True).

The Hide method

In contrast to the Destroy method, Hide is used to hide the tooltip window if it's visible:

Sub Hide()

The method can be used to hide both a display-on-demand tooltip and a normal pop-up tooltip.

The SetAllMargins method

You can specify additional indents inside the tooltip window with the MarginLeft, MarginRight,

MarginTop and MarginBottom properties. In most cases these indents are equal, and the SetAllMargins

method is used to set all these 4 properties to the same value:

Sub SetAllMargins(_

 ByVal MarginSize As Long _

)

The Supports function

hTooltip is a handy wrapper for the native Windows tooltip functionality, and the provided functionality may
depend on the version of Windows. For example, some features, such as the balloon tooltip style, may be
unavailable in early versions of Windows like Windows 95 or 98. Fortunately, all hTooltip features are available
starting from Windows XP. The Compatibility section in this document specifies the hTooltip features that were
not available in the older version of Windows.

If your app with hTooltip can be used in Windows 2000 or an earlier version of the OS, you can determine
whether specific tooltip features are available with the Supports function:

Function Supports(_

 ByVal SupportedFeature As ESupportedFeatures _

) As Boolean

This function accepts an item from the ESupportedFeatures enumeration and returns a Boolean value

indicating whether the corresponding feature is available. The ESupportedFeatures enumeration has two

items, httSupportBalloonStyle (0) and httSupportTitleAndIcon (1), which correspond to the

abilities to display balloon tooltips and to provide title and/or icon respectively. For instance, the following
expression returns True if you can use balloon tooltips in your app:

objTT.Supports(httSupportBalloonStyle)

The InitWithPattern method

The source code for this section is stored in the Tutorial 7 – Tooltip patterns

If you create a large number of tooltips with similar properties, you can simplify your code and automate the
process of initialization of your tooltips with tooltip patterns. Tooltip pattern is an object that stores the

Tutorials/Tutorial%207%20-%20Tooltip%20patterns/

10Tec hTooltip 1.1 Manual -13- 2021-Nov-16

properties of the tooltip but does not do any real work. In the hTooltip component a tooltip pattern is
represented with the instance of the CTooltipPattern class, and the following InitWithPattern method

is used to initialize the tooltip object with the values of the properties of the specified pattern:

Sub InitWithPattern(_

 ByVal TooltipPattern As CTooltipPattern _

)

For instance, you want to provide the same tooltip view and functionality for all controls in your form. Say you
need to display white text on blue background in your tooltips, each tooltip must appear practically at the
same time when the user places the mouse pointer inside a control (the DelayTime parameter should be

50ms) and the tooltip window should remain visible for 7 seconds. And in addition, each tooltip should have
the balloon style and must be centered under the tool it is attached to.

To achieve this, we create the corresponding instance of the CTooltipPattern class in our code:

Dim objTTP As New CTooltipPattern

With objTTP

 .DelayTime = 50

 .VisibleTime = 7000

 .BackColor = vbBlue

 .ForeColor = vbWhite

 .Centered = True

 .Style = httStyleBalloon

End With

Let's assume we have two command buttons (Command1, Command2) and one text box (Text1) on our form,
and we need to attach tooltips which are different in tooltip text to these controls. Then we simply use this
pattern to initialize our tooltips:

Set objTT1 = New CTooltip

objTT1.InitWithPattern objTTP

objTT1.Text = "Command1"

objTT1.CreateForVBCtrl Command1

Set objTT2 = New CTooltip

objTT2.InitWithPattern objTTP

objTT2.Text = "Command2"

objTT2.CreateForVBCtrl Command2

Set objTT3 = New CTooltip

objTT3.InitWithPattern objTTP

objTT3.Text = "Text1"

objTT3.CreateForVBCtrl Text1

This code will be supported easily in the future too. See, if you need to change for example the DelayTime

parameter for all your tips, you can simply do it in the pattern with one line of code.

The ShowAboutBox method

In fact, this method does not do any tooltip-related work, it simply displays the About dialog that contains the
information about the current version of the hTooltip component (such as the author, the version, etc.):

Sub ShowAboutBox()

Tooltip events

The MouseEnter and MouseLeave events

These are the only events raised by the CTooltip class. The MouseEnter event occurs when the mouse

pointer enters the tool the tooltip is attached to, the MouseLeave one is triggered when the mouse pointer

leaves the area occupied by the tool. Note that these events are fired properly even if the tool is a rectangle

10Tec hTooltip 1.1 Manual -14- 2021-Nov-16

inside a real control or an entire window (when the tooltip window was created with the CreateForRect

method).

In some cases you need to set the MouseEnterOnCreation property of the CTooltip object to True to

properly raise these events because of the internal window organization in Windows. It is required if (1) you
create tooltips from the MouseMove event in your controls and (2) your form is cluttered with a large amount

of controls which are placed next to each other. When you move the mouse pointer very fast over these
controls, the MouseEnter and MouseLeave events may be missed for some controls in this scenario, and

setting the MouseEnterOnCreation to True fixes this issue. In fact, the MouseEnter event is raised

automatically when you invoke one of the Create* methods, and after that the tooltip object 'knows' that it

should check whether the mouse pointer leaves the tool's area in order to raise the MouseLeave event

properly.

10Tec hTooltip 1.1 Manual -15- 2021-Nov-16

Advanced Topics

Multiline tooltips

The source code for this section is stored in the Tutorial 4 - Multiline tooltip

You can create a multiline tooltip if you do the following:

1) Insert the CR (carriage return, the ASCII code is 13) and LF (line feed, the code is 10) characters into
the tooltip text in the places where you need a new line of text.

2) Assign a value to the MaxWidth property. In this case the component breaks the tooltip text by itself

trying to keep up the specified maximum width.

If required, both ways can be used for the same tooltip.

Below you see an example of a multiline tooltip created with the first way:

objTT.Text = "Tooltip text" & vbCrLf & "of two lines"

This setting creates the following tooltip with two lines of text:

NB: you can only create multiple lines in the tooltip’s text, not in its title.

Using tab stops

hTooltip lets you create tabular formatted text using system tab stops. You specify tabulation in your text
simply by inserting the TAB character (the ASCII code is 9).

Look at the following screenshot:

This tooltip can be created with the following code snippet:

objTT.Icon = httIconInfo

objTT.Style = httStyleBalloon

objTT.Title = "Louisiana"

objTT.Text = "Capital: " & vbTab & "Baton Rouge" & vbCrLf & _

 "Population: " & vbTab & "4 468 976"

Setting tooltip font

By default, hTooltip uses the default system tooltip font. Its Font property is set to Nothing by default to

indicate this fact.

If you need to assign your own font to a tooltip, you first need to create an instance of the StdFont object

and assign a reference to it to the Font property. After that you will be able to set the properties of your

tooltip font.

Here is an example of how you can assign a new Tahoma bold 12pt font to your objTT tooltip object:

Tutorials/Tutorial%204%20-%20Multiline%20tooltip/

10Tec hTooltip 1.1 Manual -16- 2021-Nov-16

Set objTT.Font = New StdFont

objTT.Font.Name = "Tahoma"

objTT.Font.Size = 12

objTT.Font.Bold = True

If you want to revert to the default system tooltip font, assign Nothing to the Font property:

Set objTT.Font = Nothing

Using the MouseEnter/MouseLeave events

The source code for this section is stored in the Tutorial 3 - MouseEnter & MouseLeave

VB6 and VBA lack the MouseEnter/MouseLeave events for their controls. You can emulate these events in

your code by processing standard mouse events like MouseMove. You must do it for the control, the form it

is placed on, and other controls on the form (if any). You must also write a lot of additional code that detects
whether the control is overlapped by another control or even another app, but it is a hard and tedious work
in the general case.

The CTooltip class provides you with a simplest way to get these events. When you create a tooltip for a

control, the corresponding instance of the CTooltip class already fires these events – you simply need to

handle them if you need it.

Let's consider an example in which we display a status bar message in a form when the mouse pointer enters
and leaves the area occupied by a Label control:

As always, let's declare a tooltip object in the form module. Notice that now we should do it with the
WithEvents keyword as we are going to process events:

Private WithEvents objTT As CTooltip

The next step is to create the corresponding instance of the CTooltip class and set its properties:

Private Sub Form_Load()

 Set objTT = New CTooltip

 With objTT

 .Title = "Tooltip title"

 .Text = "Tooltip text."

 End With

 objTT.CreateForVBCtrl Label1

End Sub

And finally we write the event handlers for the MouseEnter and MouseLeave events:

Tutorials/Tutorial%203%20-%20MouseEnter%20&%20MouseLeave/

10Tec hTooltip 1.1 Manual -17- 2021-Nov-16

Private Sub objTT_MouseEnter()

 StatusBar1.SimpleText = "The mouse pointer entered the Label"

End Sub

Private Sub objTT_MouseLeave()

 StatusBar1.SimpleText = "The mouse pointer left the Label"

End Sub

That's all. Launch the project and see – it works.

With the hTooltip component, you can even use the MouseEnter and MouseLeave events without displaying

a tooltip. Remove the With statement in the code above in which we set up the tooltip (if you leave the Text

property empty, the tooltip never appears):

Private Sub Form_Load()

 Set objTT = New CTooltip

 objTT.CreateForVBCtrl Label1

End Sub

And you will see that the MouseEnter/MouseLeave events still works!

Creating and displaying tooltips dynamically

Scenario #1: A huge number of objects

The source code for this section is stored in the Tutorial 5 – Dynamic tooltips

In this scenario you need to display a lot of typical tooltips for a large amount of objects in your code.
Sometimes, the total number of these objects is even not known beforehand because they are created
dynamically. The hTooltip component can also greatly simplify this task. You can create one instance of the
CTooltip class in your code and dynamically assign it to each object when the mouse pointer hovers over

the object.

Let's place several labels on a form and display a tooltip with the name of the label under the mouse pointer
when the pointer hovers over one of our labels:

First, create a control array from our labels with the name LabelArray. Then declare our tooltip object and
initialize it:

Tutorials/Tutorial%205%20-%20Dynamic%20tooltips/

10Tec hTooltip 1.1 Manual -18- 2021-Nov-16

Private WithEvents objTT As CTooltip

Private Sub Form_Load()

 Set objTT = New CTooltip

 objTT.Title = "Information"

 objTT.Style = httStyleBalloon

 objTT.Icon = httIconInfo

 objTT.DisplayOnDemand = True

 objTT.MouseEnterOnCreation = True

End Sub

Pay attention to the fact that we do not create a real tooltip window and attach it to any control. We do it

later in the MouseMove event for our labels:

Private Sub LabelArray_MouseMove(Index As Integer, Button As Integer, _

 Shift As Integer, X As Single, Y As Single)

 If Not objTT.IsCreated Then

 objTT.Text = "The pointer is inside the " & LabelArray(Index)

 objTT.CreateForVBCtrl LabelArray(Index)

 objTT.Show LabelArray(Index).Width / 2, LabelArray(Index).Height * 0.8, True

 End If

End Sub

And we also need to hide the displayed tooltip when the mouse pointer left the tool. The best place to do it is
the MouseLeave event of the CTooltip class:

Private Sub objTT_MouseLeave()

 objTT.Destroy

End Sub

Some remarks to the code.

1. The MouseMove event can be raised several times for a Label, but we display the tooltip only once

when the pointer enters the Label's area. We check whether the tooltip window is created in the
MouseMove event with the IsCreated property. When the pointer leaves the Label's area, we

destroy the tooltip window with the Destroy method. The method destroys only the tooltip window

but not the entire tooltip object, and the IsCreated property returns False after that.

2. The tooltip remains visible until you move the mouse pointer outside the Label's area. This is possible
due to the NeverHide parameter of the Show method we set to True. If we did not do this, this

parameter would be set to False by default, and the tooltip would have disappeared after the period
of time specified in the VisibleTime property.

3. When we initialize the tooltip, we set the MouseEnterOnCreation property to True. It is not

required in our sample when we have several objects, but if you deal with a large number of objects,
the MouseEnter/MouseLeave events may not be fired properly if you move the mouse very fast

over your objects (due to the internal organization of the operating system). Setting the
MouseEnterOnCreation property to True causes the CTooltip class to raise the MouseEnter

event automatically when you create the tooltip window with the Create* method and the

MouseLeave event is also fired properly in this case in the future.

Scenario #2: Tracking tooltips

The source code for this section is stored in the Tutorial 6 - Tracking tooltips

With hTooltip you can implement so-called tracking tooltips that 'track' the mouse pointer (the tooltip follows
it). The tooltip text can also be changed while the tooltip is moving. As an example, let's implement with
hTooltip the application in which we display the coordinates of the mouse inside a form using our own multiline
tooltip:

Tutorials/Tutorial%206%20-%20Tracking%20tooltips/

10Tec hTooltip 1.1 Manual -19- 2021-Nov-16

First, we create the tooltip object and initialize it:

Private WithEvents objTT As CTooltip

Private Sub Form_Load()

 Set objTT = New CTooltip

 objTT.DisplayOnDemand = True

 objTT.SmartPositioning = False

 objTT.CreateForHwnd Me.hWnd

End Sub

Note that we create the tooltip for the entire form using the form's API handle and the CreateForHwnd

method of CTooltip.

Then we simply display our tooltip just below the mouse pointer and hide the tooltip when the pointer is out
of the form (notice the default measurement unit for a form in VB6 – twips):

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As

Single)

 objTT.Text = "X: " & X & vbCrLf & "Y: " & Y

 objTT.Show X, Y + 330, True

End Sub

Private Sub objTT_MouseLeave()

 objTT.Hide

End Sub

The same technique can be applied to any intrinsic control, not just to the whole form.

Note that we hide the tooltip with the Hide method, not Destroy. In the latter case the tooltip window would

be destroyed, and we would need to recreate it again each time in the MouseMove event with the

CreateForHwnd method.

We also turn off smart positioning for our tooltip with the SmartPositioning property. Otherwise the tooltip

would be displayed near the form as smart positioning tries to position the tooltip window to not overlap the
window it is attached to:

10Tec hTooltip 1.1 Manual -20- 2021-Nov-16

The ScaleMode property

To simplify your programming in VB6, hTooltip uses twips as the default measurement unit because this is the
default measurement unit in VB6. 'Twip' is a screen-independent unit used to ensure that placement and
proportion of screen elements in your screen application are the same on all display systems. A twip is a unit
of screen measurement equal to 1/20 of a printer's point. There are approximately 1440 twips to a logical inch
or 567 twips to a logical centimetre (the length of a screen item measuring one inch or one centimetre when
printed). In most cases, when you use the standard screen resolution in Windows (96 DPI, dots per inch), 1
pixel equals 15 twips.

But if you use hTooltip in another development environment, the measurement unit will in all likelihood be the
pixel (FYI: you can also select this measurement unit for your forms in VB6). You must factor this in if you
deal with coordinates in some hTooltip methods, such as Show or CreateForRect. In this case the

CTooltip and CTooltipPattern classes provide you with the ScaleMode property you should set to

'pixels' (EScaleMode.httScalePixels in VB6/VBA or simply 1 in other development environments).

For instance, the following Visual FoxPro code creates a balloon tooltip for the command button COMMAND1.
Note that we set the ScaleMode property to 'pixels':

PUBLIC objHTT

objHTT = CREATEOBJECT("hTT110_10Tec.CTooltip")

objHTT.Text = "It is a real balloon tooltip"

objHTT.Title = "Balloon tooltip"

objHTT.Icon = 1

objHTT.Style = 1

objHTT.ScaleMode = 1

objHTT.CreateForRect(THISFORM.HWnd, THISFORM.COMMAND1.Left, THISFORM.COMMAND1.Top,

THISFORM.COMMAND1.Width, THISFORM.COMMAND1.Height)

Setting DelayTime and VisibleTime to system defaults

You can assign -1 or any other negative value to the DelayTime or VisibleTime property to set the value

of the property to the corresponding system default value. Note that after such an assignment the property
returns a positive value in milliseconds that is in effect.

These properties of a tooltip pattern object (the instance of the CTooltipPattern class) are set to -1 by

default. This causes any real tooltip object (the CTooltip class) to use the system default values as well.

Tooltip patterns and the DefaultTooltip global object

The first sample for this section is stored in the Tutorial 7 – Tooltip patterns

The second sample code for this section is stored in the Tutorial 8 - The DefaultTooltip object

We have already described how you can simplify your work with the InitWithPattern method and tooltip

patterns when you create a bunch of tooltips of the same kind (see the section devoted to this method). In
VB6 and VBA in Microsoft Office you can even simplify coding even more using the DefaultTooltip global

object.

Tutorials/Tutorial%207%20-%20Tooltip%20patterns/
Tutorials/Tutorial%208%20-%20The%20DefaultTooltip%20object/

10Tec hTooltip 1.1 Manual -21- 2021-Nov-16

The DefaultTooltip object is implemented by the hTooltip library and can be used anywhere in your

VB6/VBA code without preliminary declaration as it is a global object. When you set the reference to the
hTooltip DLL, the DefaultTooltip object appears in the IntelliSense list and is used in your code as if it

were an intrinsic object.

The DefaultTooltip object has the CTooltipPattern type (like tooltip patterns) and in fact it stores the

default values for the properties of the tooltip objects you create in your code (the instances of the CTooltip

class).

Let us demonstrate how the code from the first sample (in which we demonstrate the InitWithPattern

method) is simplified with the DefaultTooltip object. Here is the part of the original code:

Dim objTTP As New CTooltipPattern

With objTTP

 .DelayTime = 50

 .VisibleTime = 7000

 .BackColor = vbBlue

 .ForeColor = vbWhite

 .Centered = True

 .Style = httStyleBalloon

End With

Set objTT1 = New CTooltip

objTT1.InitWithPattern objTTP

objTT1.Text = "Command1"

objTT1.CreateForVBCtrl Command1

Set objTT2 = New CTooltip

objTT2.InitWithPattern objTTP

objTT2.Text = "Command2"

objTT2.CreateForVBCtrl Command2

We can avoid creating the tooltip pattern and issuing the InitWithPattern method if we set the required

global tooltip properties through the DefaultTooltip object:

With DefaultTooltip

 .DelayTime = 50

 .VisibleTime = 7000

 .BackColor = vbBlue

 .ForeColor = vbWhite

 .Centered = True

 .Style = httStyleBalloon

End With

Set objTT1 = New CTooltip

objTT1.Text = "Command1"

objTT1.CreateForVBCtrl Command1

Set objTT2 = New CTooltip

objTT2.Text = "Command2"

objTT2.CreateForVBCtrl Command2

Be careful when changing the properties of DefaultTooltip as it will affect all the tooltips you subsequently

create in your code. The second sample for this section demonstrates how the settings made in the
DefaultTooltip object in one form have an effect in the other form displayed from the first one.

Notice also that the DefaultTooltip object stores the settings which are COPIED each time to a new tooltip

object when you create one. These are not the global settings you can change in one statement for all the
tooltips you currently have, DefaultTooltip is only a pattern, and its properties are copied by hTooltip

internally to each new instance of CTooltip when you create it.

The DefaultTooltip object implements only one method – Reset:

10Tec hTooltip 1.1 Manual -22- 2021-Nov-16

Sub Reset()

This method is used to reset the properties of this object to their default values. These default values
correspond to the default values of tooltip parameters in the operating system.

The hTooltip ProgID and late binding

hTooltip like any other COM object has its own ProgID (program identifier), and you can use it in your code
to create the instances of the hTooltip classes. This approach is especially useful if your development
environment supports only late binding for COM objects or you want to use late binding to work with the
hTooltip component for some reasons. Late binding can also be used to work with different versions of the
hTooltip component simultaneously in the same app.

The ProgID for the described version of hTooltip is 'hTT110_10Tec'. Thus, the full ProgID for the CTooltip

class is 'hTT110_10Tec.CTooltip'. This ProgID is used, for instance, in Visual FoxPro code when you need to
create a tooltip for the entire form:

PUBLIC objHTT

objHTT = CREATEOBJECT("hTT110_10Tec.CTooltip")

objHTT.Text = "It is a real balloon tooltip"

objHTT.Style = 1 && httStyleBalloon

objHTT.CreateForHwnd(THISFORM.HWnd)

Here is the equivalent code in Visual Basic:

Private objTT As Object

Private Sub Form_Load()

 Set objTT = CreateObject("hTT110_10Tec.CTooltip")

 objTT.Text = "It is a real balloon tooltip"

 objTT.Style = 1 ' httStyleBalloon

 objTT.CreateForHwnd Me.hWnd

End Sub

10Tec hTooltip 1.1 Manual -23- 2021-Nov-16

Compatibility Info

Windows visual styles support

The source code for this section is stored in the Tutorial 9 - Windows visual styles

The tooltips created with the hTooltip component are automatically rendered using the current Windows visual
style if visual styles are enabled in your application. The main differences you can notice in tooltips when visual
styles are turned on are the beautiful shadow behind the tooltip window and a more attractive, not
denticulated, system icon. The tooltip window also appears using a fade-in effect. Compare the following two
pictures of the same tooltip when visual styles are turned off and on:

Microsoft Office VBA provides built-in visual styles support in Microsoft Office since 2019. For other
development environments, including Visual Basic 6, you must enable support for visual styles manually if the
development environment does not provide this support out of the box.

There are several approaches how you can enable visual styles in your VB6 applications. One of them is
implemented in the accompanying sample project. In a nutshell, we incorporated a special resource file into
the VB6 project and enabled visual styles by initializing the Common Controls library with the
InitCommonControls WinAPI function:

Private Declare Sub InitCommonControls Lib "comctl32.dll" ()

Private Declare Function LoadLibrary Lib "kernel32" Alias "LoadLibraryA" (_

 ByVal lpLibFileName As String) As Long

Private Declare Function FreeLibrary Lib "kernel32" (_

 ByVal hLibModule As Long) As Long

Private m_hMod As Long

Private Sub Form_Initialize()

 m_hMod = LoadLibrary("shell32.dll")

 InitCommonControls

End Sub

Private Sub Form_Unload(Cancel As Integer)

 ' unload shell32.dll - used only to turn on using visual styles

 FreeLibrary m_hMod

End Sub

Notice that visual styles work only if you launch a compiled exe but not in the VB6 IDE as this IDE does not
support them.

hTooltip features and the Windows Common Controls library

The tooltip features encapsulated in the hTooltip component rely on the Common Controls library
(ComCtl32.dll) included in each version of Microsoft Windows. Depending on the version of this library, some
features may not work.

Fortunately, practically all the tooltip features you can access through the hTooltip component are
implemented by the version 5.80 of the Common Controls, and this version of the DLL is included in Windows
98 Second Edition and Windows 2000 or redistributed with Internet Explorer 5.0. If you have a later version

Tutorials/Tutorial%209%20-%20Windows%20visual%20styles/

10Tec hTooltip 1.1 Manual -24- 2021-Nov-16

of Microsoft Windows or IE, the corresponding later version of ComCtl32.DLL is installed on your system, and
of course, due to backward compatibility, all the tooltip features will work as well.

The following table lists the main hTooltip features and the versions of Windows and ComCtl32.dll they are
rely on:

Feature hTooltip Members ComCtl Comes with

ComCtl32.dll v5.80

Balloon style Property: Style

5.80

IE: 5

Win9X: 98SE

WinNT: 2000

(but not originally in Windows

95,98/Windows NT 4.0)

Title Property: Title

Icon

(only if has title)
Property: Icon

ComCtl32.dll v5.80 and MS Windows 98/2000

Slide effect Property: UseSlideEffect 5.80

The sliding ToolTip animation is

available on Windows 98 and
Windows 2000 systems. This

effect cannot be used on earlier

systems.

The effect works only for

rectangular tooltips.

Fade effect Property: UseFadeEffect 5.80

The fading ToolTip animation is
available on Windows 98 and

Windows 2000 systems. This
effect cannot be used on earlier

systems.

The effect works only for

rectangular tooltips.

ComCtl32.dll v4.70

Display on demand
Property: DisplayOnDemand

Method: Show

4.70

IE: 3

Win9x: Win95 OSR2

WinNT: 4.0

Margins changing

Properties:
Margin{Left|Top|Right|Bottom}

Method: SetAllMargins

Max width Property: MaxWidth

Smart positioning Property: SmartPositioning

The Supports function of the CTooltip class allows you to determine whether some of these features are

available in the current environment.

Balloon tips availability

Balloon tips can be disabled in the Windows OS even if the system supports them. Although this setting cannot
be changed in the Windows OS’s system settings, it can be switched using any registry editor app or with
many 3rd-party system tweakers. Sometimes this option is also called 'system tray balloons' in those apps.
Actually all balloon tooltips in the system are suppressed when you turn this option off.

If hTooltip balloon tips are not displayed at all, check the following registry key:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced

If it contains the EnableBalloonTips DWORD value set to 0, balloon tooltips are disabled in your system. To
enable them, set EnableBalloonTips to 1 or even remove this value from the registry. You should restart your
application to see the effect of this setting change.

10Tec hTooltip 1.1 Manual -25- 2021-Nov-16

Known Problems and Limitations
1. The DelayTime and VisibleTime have the Integer data type in Visual Basic (2 bytes signed integer

value). This means that the maximum value you can set each of these properties to is 32767 milliseconds.
This is a restriction of the native tooltips in Windows.

2. If you create two tooltips for two rectangle regions with the CreateForRect methods and those two

rectangles have an intersection, you may see the two tooltips when you pause the mouse pointer in the
intersection region. Be careful if you have overlapped windowless controls (such as Label) in your VB6
form because CreateForRect is used internally to create tooltips for such controls.

3. A VB6 application crashes if you create tooltips for two or more Label controls twice. This should not be
a problem in real-world apps because in the vast majority of cases a tooltip is created just once for a
particular control when an application starts.

	Contents
	Introduction
	Adding hTooltip to Your Project
	Visual Basic and VBA
	Other development environments

	The Basics
	Some definitions
	Creating and displaying tooltips
	Sample #1: Creating a pop-up balloon tooltip for a command button
	Sample #2: Using a display-on-demand tooltip for a text box

	CTooltip's Members
	Tooltip properties
	Appearance properties
	Behavior properties
	Information properties

	Tooltip methods
	The Create* methods
	The Destroy method
	The Show method
	The Hide method
	The SetAllMargins method
	The Supports function
	The InitWithPattern method
	The ShowAboutBox method

	Tooltip events
	The MouseEnter and MouseLeave events

	Advanced Topics
	Multiline tooltips
	Using tab stops
	Setting tooltip font
	Using the MouseEnter/MouseLeave events
	Creating and displaying tooltips dynamically
	Scenario #1: A huge number of objects
	Scenario #2: Tracking tooltips

	The ScaleMode property
	Setting DelayTime and VisibleTime to system defaults
	Tooltip patterns and the DefaultTooltip global object
	The hTooltip ProgID and late binding

	Compatibility Info
	Windows visual styles support
	hTooltip features and the Windows Common Controls library
	Balloon tips availability

	Known Problems and Limitations

