
What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 1 of 16

10Tec iGrid ActiveX 6.0
What's New in the Release

Contents
Revamped context menu system .. 1

Combo cells: text editing and other improvements ... 4

Loading cell values from/into arrays ... 5

Changes related to the clipboard operations and the DELETE key ... 6

Changes in font properties .. 7

Windows 10 and new header features ... 9

New tools to control modifications in iGrid .. 10

Other changes and enhancements ... 11

Fixed bugs .. 15

Tags used to classify changes:

• [New] – a new feature, member or member parameter;

• [Change] – a change in a member functionality or interactive behavior;

• [Fixed] – a fixed bug or solved problem;

• [Removed] – a member was completely removed;

• [Enhancement] – some functionality was enhanced;

• [Optimization] – a feature has speed improvements and/or uses fewer resources;

• [Renaming] – a member was renamed;

• [Code-Upgrade] – indicates a change existing code may need when upgrading from the previous version.

Revamped context menu system

This release of iGrid introduces new tools related to the context menu system. The following operations can
be easily implemented now in iGrid:

• You can add custom menu items to the built-in cell and column header context menus, or even
replace them with your own menus.

• You can implement custom context menus for the header extra area and no-cell area.

• The native OS context menu displayed while editing text cells can be replaced with your own
custom context menu.

Note that these tasks can be implemented using only iGrid’s members, i.e. without any external
components or VB/VBA intrinsic language tools. This is especially useful for MS Office VBA developers as
this environment does not provide developers with built-in objects for building system-like context menus.

1. [New] Custom context menu items are defined using the new ContextMenuCustomItems property. It is
indexed by the items of the new EContextMenuSource enumeration:

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 2 of 16

Enum EContextMenuSource

 igContextMenuCell = 1

 igContextMenuColHeader = 2

 igContextMenuNoCellArea = 3

 igContextMenuHeaderExtraArea = 4

 igContextMenuTextEdit = 5

End Enum

Every item of this enumeration defines the area a context menu belongs to, and the
ContextMenuCustomItems property returns the collection of custom items for the context menu in the
specified area. For instance, the following expression can be used to access the collection of custom
context menu items for cells:

iGrid1.ContextMenuCustomItems(igContextMenuCell)

A collection of custom menu items is an object of the new ContextMenuItemsObject class. It provides
you with basic features you can use to work with collections, such as the Count property and the Add,
Remove and Clear methods. Custom menu items are indexed using numeric indices starting from 1. You
can read/set the string caption, the enabled and checked statuses, and the optional tag to store any
extra information for every menu item using the indexed ItemCaption(), ItemEnabled(),ItemChecked()
and ItemTag() properties respectively of the ContextMenuItemsObject.

The Add method of the ContextMenuItemsObject is used to create menu items:

Sub Add(_

 ByVal sCaption As String, _

 Optional ByVal bEnabled As Boolean = True, _

 Optional ByVal bChecked As Boolean = False, _

 Optional ByVal vTag As Variant)

The sCaption parameter specifies the caption of the new menu item; a hyphen (-) is used to create a
menu separator. The optional bEnabled and bChecked parameters are used to make the new menu
item enabled/disabled and to add a check mark to it respectively. The vTag parameter is filled with an
optional value of any type you want to associate with the new item.

Below is an example adding 3 custom items to the default cell context menu:

With iGrid1.ContextMenuCustomItems(igContextMenuCell)

 .Add "Custom Item 1"

 .Add "Custom Item 2", False

 .Add "Custom Item 3", , True

End With

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 3 of 16

Pay attention to the fact that iGrid automatically inserts a separator item before the first custom item if
the built-in context menu already contains some default items.

2. [New] The new ContextMenuPopup event is raised before a context menu is displayed on the screen:

Event ContextMenuPopup(_

 ByVal eContextMenu As EContextMenuSource,

 ByVal lRowIfAny As Long, ByVal lColIfAny As Long, _

 ByRef bCancel As Boolean, ByRef bHideDefaultItems As Boolean)

The eContextMenu parameter indicates the iGrid area the context menu is displayed for.

The row and column index of the object related to the context menu are passed in the lRowIfAny and
lColIfAny parameters. They can contain 0 if the corresponding parameter isn’t applicable to the context
menu. For instance, the row index makes sense only for real cells, while for column headers only
lColIfAny will contain the column index and lRowIfAny will always equal 0.

The bCancel parameter passed by reference can be used to prohibit the displaying of the corresponding
context menu at all.

If the context menu is allowed and it contains default items (for instance, these are the copy/paste
commands in iGrid’s cell context menu), they can be hidden using the bHideDefaultItems parameter. If
you defined custom items for this menu, only your custom items will be displayed in this case.

Event handlers of this event can be used to redefine the list of custom context menu items dynamically
depending on some conditions when a context menu should be displayed (for instance, you can include
information regarding the column under the mouse pointer when the column header context menu is
displayed). This event is also a good place if you want to display a context menu implemented with an
external component.

Note that iGrid still has the BuiltinContextMenus property you can use to turn off the built-in context
menu for cells in browse mode and the iGrid context menu for column headers in one property
assignment. If we compare this property with the ContextMenuPopup event, the setting

iGrid1.BuiltinContextMenus = False

is equivalent to the following event handler sub:

Private Sub iGrid1_ContextMenuPopup(…)

 If (eContextMenu = igContextMenuCell) Or _

 (eContextMenu = igContextMenuColHeader) Then

 bHideDefaultItems = True

 End If

End Sub

Even if you set BuiltinContextMenus to False, iGrid still raises the ContextMenuPopup event and may
display your custom context menu items defined with the ContextMenuCustomItems property.

3. [New] To process clicks on the custom items of iGrid’s context menus, use the new
ContextMenuCustomItemClick event. It provides you with the following information:

Event ContextMenuCustomItemClick(_

 ByVal eContextMenu As EContextMenuSource, _

 ByVal lRowIfAny As Long, ByVal lColIfAny As Long, _

 ByVal lCustomIndex As Long)

The eContextMenu parameter indicates the context menu type (the cell context menu, the column
header context menu, etc.). The lRowIfAny and lColIfAny parameters contain the row and column index
of the object the context menu is displayed for (the same values like in the ContextMenuPopup event).

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 4 of 16

The lCustomIndex parameter contains the index of the clicked menu item in the collection of the
corresponding custom context menu items. For instance, if the user clicks ‘Custom Item 1’ in the
example above, lCustomIndex will contain 2 (the first item is a separator).

4. [Enhancement] This release adds the ability to display the context menu for cells using the keyboard (in
the previous builds, it can be done only with the right mouse button click). The cell context menu is
displayed when the user presses the special Menu key on the keyboard or presses SHIFT+F10, which is
the standard key combination for this purpose in Microsoft Windows.

5. [Removed][Code-Upgrade] This version of iGrid allows you to prohibit a context menu of every
particular type using the bCancel parameter of the ContextMenuPopup event. The bDoDefault
parameter of the HeaderRightClick event used for the same purpose in the previous version was
removed to avoid duplication of functionality.

6. [Removed][Code-Upgrade] The TextEditCustomContextMenu property and the related
TextEditShowCustomContextMenu event were removed. The functionality provided by those members
can be implemented using the new ContextMenuPopup event. Here is the typical equivalent code for
VB6 used to display a custom context menu when the user is editing a text cell:

Private Sub iGrid1_ContextMenuPopup(…)

 If eContextMenu = igContextMenuTextEdit Then

 bHideDefaultItems = True

 PopupMenu mnuCustomTextEditMenu

 End If

End Sub

However this approach with VB’s PopupMenu statement does not work good if the user uses the
keyboard to invoke the context menu (SHIFT+F10 or the Menu key). The PopupMenu statement above
will display the context menu at the current position of the mouse pointer, which can be far enough
from the edited cell. We recommend using the new built-in collection of custom context menu items
ContextMenuCustomItems(igContextMenuTextEdit) instead as iGrid will properly position them in the
context menu directly in the edited cell even if the context menu is invoked from the keyboard.

Pay attention to the fact that you can’t add custom items to the context menu displayed when a text
cell is being edited as this menu is provided by the OS services and can’t be modified. You can only fully
replace this menu with your custom context menu, and you need to set the bHideDefaultItems
parameters of the ContextMenuPopup event to True for that (otherwise the default system context
menu will pop up).

Combo cells: text editing and other improvements

1. [New] The new cell type igCellTextCombo allows you to create combo cells with the ability to input any
strings not stored in the combo list. Actually cells of this type combine the features of the text
(igCellText) and combo (igCellCombo) cells. For instance, you can start editing of such a cell by pressing
an alpha-numeric key or F2, and then open the attached combo list using F4 and select the required
string from it. Or you can open the combo list by pressing the cell’s combo button with the mouse, and
the text editor will be activated automatically allowing you to enter any text as well.

An igCellTextCombo cell automatically supports the so-called autoexpand feature available for combo
box fields in Microsoft Access: iGrid searches the values in the combo list to find those that match the
entered characters, and automatically places the first underlying value that matches the characters
entered so far into the cell. This feature can be turned on/off for a combo list using the new Boolean
ComboObject.AutoExpand property.

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 5 of 16

In contrast to the standard Windows combo box control and the corresponding ComboBox control in
Visual Basic, iGrid does not highlight the first combo list item that starts with the cell text when the
combo list is opened – it does that only when an item equals the cell text. This allows you to save the
entered cell text “as is” even if you opened a combo list while editing the cell.

2. [New][Enhancement][Removed][Code-Upgrade] The igComboBtnFlat and igCheckBoxFlat flags in the
ECellTypeFlags enumeration were used to set the flat look for cell check boxes and combo buttons in
the previous versions. However, any grid uses either 3D or flat cell controls, and now you can easily
specify that for the whole grid with one new Boolean property named FlatCellControls (the default
value is False). As a result, the igComboBtnFlat and igCheckBoxFlat flags are no longer needed, and
they were removed from the ECellTypeFlags enumeration.

3. [Optimization] Long combo lists (1000+ items) are opened much faster.

4. [Optimization][Fixed] The internal infrastructure of combo lists was redesigned to use fewer GDI
resources and to eliminate flickering of the grid control in Microsoft Access when combo lists are
opened and closed.

5. [Fixed] Some problems with drawing combo buttons using the hot-track effect were fixed.

6. [Fixed] Combo box cells displayed improper values after inserting new items into the related combo lists
or removing items from them.

Loading cell values from/into arrays

This version of iGrid allows you to copy cell values from and into an array using the two new methods,
LoadFromArray and LoadIntoArray. Both 1-dimensional and 2-dimensional arrays can be used for this.

The main advantage of these methods is the performance they provide in comparison to the equivalent
traditional loops with CellValue calls. For instance, the LoadFromArray method executes about 10 times
faster than the traditional CellValue-based loop for big amounts of data, and subsequent calls of this
method for the same grid can give 25x-40x performance gain depending on the data. The main reason why
these methods execute so fast is that they access cell values in the internal data storage directly, and the
iGrid events related to interactive editing when cell values are changed (such as BeforeCommitEdit) are not
raised in this case.

The arrays you can pass to these methods are also compatible with Microsoft Office VBA methods and
properties, such as the Range.Value property in Microsoft Excel that can be used to retrieve or set a range
of cells using an array.

1. [New] The new LoadFromArray method allows you to copy values from an array into iGrid cells:

Sub LoadFromArray(_

 ByVal vStartRow As Variant, _

 ByVal vStartCol As Variant, _

 ByRef vArray As Variant, _

 Optional ByVal bColMajorOrder As Boolean = False)

The vStartRow/vStartCol parameters specify the row and column in the grid to start population at.

The vArray parameter contains the array used as the data source. If it is a non-initialized array or it has
more than 2 dimensions, iGrid raises its internal "Invalid procedure call or argument" error.

The bColMajorOrder parameter is used differently depending on the number of dimensions in the
specified array. If the array has 1 dimension and bColMajorOrder equals False (the default mode), iGrid
places the values from the array into the vStartCol column starting from the vStartRow/vStartCol cell. If
bColMajorOrder equals True, the array values are used to populate the vStartRow row starting from

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 6 of 16

the vStartRow/vStartCol cell. For 2-dimensional arrays, if bColMajorOrder equals False, the first
dimension of the array is used as row index and the second dimension defines columns; otherwise the
first dimension is used as column index and the second dimension is used to access rows.

2. [New] The new LoadIntoArray method is used to retrieve the values of cells in a rectangular cell range
in the form of an array:

Sub LoadIntoArray(_

 ByVal vStartRow As Variant, _

 ByVal vStartCol As Variant, _

 ByRef vArray As Variant, _

 Optional ByVal bColMajorOrder As Boolean = False)

The vStartRow/vStartCol parameters specify the top-left cell of the cell range to copy.

The vArray parameter is used to pass a reference to the destination array the cells will be copied to. Pay
attention to the fact that it must be an existing 1- or 2-dimensional array, and its size defines the total
number of grid rows and columns that will be copied.

If a 2-dimensional array is passed to the method and bColMajorOrder equals False (the default mode),
the first dimension defines the number of rows to copy, and the second dimension defines the number
of columns. If bColMajorOrder equals True, the first dimension is used as column index and the second
dimension is used as row index.

For a 1-dimensional array, iGrid copies the cells from the vStartCol column starting from the vStartRow
into the specified array if bColMajorOrder equals False. If bColMajorOrder equals True, the cell values
from the row vStartRow starting from the column vStartCol are copied into the array.

Two notes regarding these methods:

• The array is passed to both methods as a Variant variable, which allows you to pass an array of any
data type for processing. In the case of the LoadFromArray method, any data type can be copied
into iGrid cell values as they are Variants. However, you can get the VB “Type mismatch” error
during the call of the LoadIntoArray method if the data type of an iGrid cell value isn’t compatible
with the base data type of the array.

• Both methods automatically process the row text column if the specified array has the
corresponding column. For instance, if the grid has 5 main columns (its ColCount property equals 5)
and you specify a 6-column array when calling LoadFromArray, the 6th column of the array will be
uploaded into the row text column.

Changes related to the clipboard operations and the DELETE key

All changes described in this section are consequences from the following two key aspects of iGrid:

A. The Cut and Paste operations change the cell value, so they are considered an act of editing cell
value – though the phase of interactive editing is absent in this case.

B. iGrid is a tool whose main purpose is to edit and validate entered data, and it should allow the user
to enter only correct data – which includes the Cut and Paste operations as well.

The DELETE key functionality is equivalent to the Cut operation, except the fact that the selected cells are
not copied into the clipboard. The changes to the DELETE key functionality are also described in this section
by this reason.

1. [Enhancement] In the previous builds, the cell contents were cleared unconditionally and the
RequestEdit and AfterCommitEdit events were raised when the user pressed the DELETE key. As of this

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 7 of 16

build you have the ability to control whether the cell contents should be cleared in the
BeforeCommitEdit event, which is an integral part of the editing event infrastructure and is raised for
this key too. The AfterCommitEdit and CancelEdit events are also raised now for the DELETE key
depending on the result of the action.

To accept the new empty value, use the eResult parameter of the BeforeCommitEdit event. Set this
parameter to igEditResCommit to accept or to igEditResCancel to reject. If you set eResult to
igEditResCommit, the AfterCommitEdit event is raised after clearing the cell contents. In the case of
igEditResCancel the CancelEdit event is raised. Note that in the general case eResult can be set to
igEditResProceed, but this value does not have any effect as interactive editing is absent. To indicate
that, the bCanProceedEditing parameter of the BeforeCommitEdit event is set to False.

All enhancements described above were also implemented for the Cut and Paste commands.

2. [Enhancement] The built-in iGrid logic converts string values entered while interactive editing into the
value of the type of the current cell value. This logic is also applied to the Cut and Paste operations now.
This enhancement allows you to control what values are pasted into cells and does not allow the user to
place improper data in your grids. For instance, now you cannot paste string values that cannot be
converted to integers into cells with integer values. The BeforeCommitEdit event is also a part of this
functionality, so the logic coded in the event handler is also used in these operations.

3. [Enhancement] This build of iGrid allows you to clear the contents of a numeric cell while editing and
save this value. In the previous builds the built-in Input Validation message box with the message “Type
mismatch” was displayed in this case; now the zero value is placed into the cell. This functionality is also
used for the DELETE key and for the Cut command.

4. [Change] In the previous builds, you could copy and paste cells within one grid with all related
formatting and other cell properties due to the so-called internal clipboard. This could corrupt data and
formatting in the target cells, and in this build only the cell texts are copied and pasted. The cell texts
pasted from the clipboard are processed as if they were entered by the user interactively, and the
traditional built-in logic with type coercion and new cell value validation in the BeforeCommitEdit event
is used during this process.

5. [Fixed] Previously the Cut operation and the DELETE key copied the default cell value from the column
default cell into the selected cell. Now only the cell value is cleared.

6. [Fixed] Previously pressing the DELETE key copied all the column default cell formatting settings
(background color, font, etc.) to the selected cell. Now only the cell value is cleared.

7. [Fixed] The DELETE key did not work in multi-selection mode when iGrid had some selected cells but did
not have the current cell.

8. [Fixed] The sText parameter of the RequestEdit event was not set for the Cut and Paste operations.
Assigning values to the lMaxLength and eTextEditOpt arguments of this event also did not have any
effect in these cases.

9. [Fixed] The DELETE key and the Cut and Paste operations did not work for a combo box cell properly:
the cell was not updated after these operations, the corresponding combo list item for the new cell
value was not found.

Changes in font properties

1. [New][Change][Fixed][Optimization][Code-Upgrade] iGrid 5.0.86 introduced one enhancement for easy
adjustment of the default column font: iGrid stored a copy of its Font object in the ColDefaultCell.oFont

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 8 of 16

property for a new column when you created it. This feature allowed you to quickly make a column’s
font bold or italic using a statement like this:

iGrid1.ColDefaultCell(1).oFont.Bold = True

However, this enhancement caused improper behavior of iGrid if the whole grid font was changed
through the iGrid.Font property later: cells whose font had not been set did not use the new grid font.
For instance, the row text column created during the initialization of iGrid did not reflect changes of the
iGrid.Font property at all and used the original default system font (MS Sans Serif, 8). Another bad side
effect: if you added some columns to the grid, then changed the grid font and created new columns,
new cells in the columns created before the font change would use the old grid font.

This enhancement was removed in this release, and now the ColDefaultCell.oFont property is not
initialized by default again. As a result, you need to modify existing code to upgrade to this build of
iGrid: create a new instance of the StdFont class and assign it to ColDefaultCell.oFont before accessing
its sub-properties. For instance, the above code snippet should be converted to

Set iGrid1.ColDefaultCell(1).oFont = New StdFont

iGrid1.ColDefaultCell(1).oFont.Bold = True

To simplify upgrade, a new FontClone function was implemented. It returns a copy of the current grid
font in which you can optionally set such properties as Bold or Italic. The full function declaration is the
following:

Public Function FontClone(_

 Optional ByVal bBold As Variant, _

 Optional ByVal bItalic As Variant, _

 Optional ByVal bUnderline As Variant, _

 Optional ByVal bStrikethrough As Variant, _

 Optional ByVal sName As Variant, _

 Optional ByVal cSize As Variant _

) As StdFont

As you can see, you can set 6 main properties of the Font object using the optional parameters. For
instance, if you need to use the bold grid font in the second column of your grid, it is enough to execute
the following statement before you populate the grid:

Set iGrid1.ColDefaultCell(2).oFont = iGrid1.FontClone(bBold:=True)

Pay attention to the fact that all parameters have the Variant data type and theoretically can accept
values of any type (this is done to have the ability to determine whether a parameter is missing in a call
of this method). However we recommend that you pass only appropriate values to avoid the “Invalid
property value” error when calling this function. The Hungarian notation used for the parameter names
tells you what value types should be used for every parameter: these are Boolean values for the first
four parameters, strings for font names, and a numeric value of the Currency data type to specify the
font size (the Size property of the StdFont object uses the same data type).

A lot of system resources are saved due to the fact that font objects of column default cells are not
initialized by default, and the more columns and grids you have in your application, the better the
effect. In the previous versions, iGrid created a copy of its font object for every column, but now these
objects are created by the developer only when they are needed.

2. [Change][Fixed][Enhancement][Code-Upgrade] All problems with cloning the current grid font described
above are also applicable to the ComboObject.Font property. In the current version the Font property
of every new combo object is not initialized by default. This also gives you a new possibility: all combo
objects with the Font property set to Nothing will reflect changes in the grid font immediately with no
extra code.

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 9 of 16

A try to set the ComboObject.Font property to Nothing generated an error in the previous builds, and
this problem was also fixed.

3. [Fixed] Setting the iGrid.Header.Font property to Nothing caused the Error 91 ‘Object variable or With
block variable not set’. Now a more meaningful iGrid specialized error 514 ‘Invalid procedure call or
argument’ is raised in this case to indicate that clearing the header font object is not allowed.

4. [Fixed] Changes of the sub-properties of the ColDefaultCell.oFont property or setting it to Nothing did
not have any effect while creating new cells in some scenarios.

5. [Fixed] The CellFont property that returns the effective font used to draw the cell text did not take into
account the cell font settings made in the CellDynamicFormatting and RowDynamicFormatting events.

Windows 10 and new header features

1. [New][Enhancement] iGrid can draw an extra line over the standard header contents in the last line of
pixels if the header is drawn using the OS visual style. This feature is mainly used to fix the problem with
the iGrid header when it is drawn using visual styles in Windows 10. This OS uses a flat user interface,
and the theme of this OS provides us with column headers without a separating line at the bottom:

As you can see, every column header and the first cell beneath it look like one big combined cell if the
grid displays vertical and horizontal grid lines (the default setting for most grids). The new extra header
bottom line fixes this problem:

The visibility of this line is controlled with the help of the new BottomLineVisibility property of the
Header object property of iGrid. It is a value of the new EHeaderBottomLineVisibility enumeration:

Enum EHeaderBottomLineVisibility

 igHdrBottomLineAuto

 igHdrBottomLineOn

 igHdrBottomLineOff

End Enum

The default value is igHdrBottomLineAuto, which implies that the extra line is drawn if the grid is used
in Windows 10 or later versions. The igHdrBottomLineOn value causes iGrid to draw the extra line
regardless of any conditions; igHdrBottomLineOff turns the extra line totally off.

The color of the extra header line at the bottom can be set or retrieved using the new
Header.BottomLineColor property. Its default value is RGB(229, 229, 229), which is the color of the
column divider in the standard header drawn with visual styles in Windows 10.

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 10 of 16

2. [New] 5 new properties can be used to control the colors used to draw column headers when visual
styles are turned off in the header. In other words, now you have full control over the colors used to
draw the header – which was not possible in the previous versions.

The new ButtonEdgeColorOuterLeftTop, ButtonEdgeColorOuterRightBottom,
ButtonEdgeColorInnerLeftTop, ButtonEdgeColorInnerRightBottom properties of the Header object
allow you to specify the colors used to draw the column header buttons. If the header has a flat look,
only the right-bottom edge is drawn, and its color is retrieved from the
ButtonEdgeColorOuterRightBottom property.

These colors are also used to draw the extra header part to the right of the last column header. To have
consistent look, the colors from the ButtonEdgeColorOuterLeftTop and
ButtonEdgeColorInnerRightBottom properties are used to draw the sort icons when their style is set to
3D triangles.

When a column header is pressed, its edge is drawn as a rectangle, and the color of this rectangle can
be read/set using the new ButtonEdgeColorPressed property.

3. [Change][Code-Upgrade] The Header.Buttons property no longer affects the header look. In the
previous versions the header became flat if this property was set to False and visual styles were not
used in the header. Now the flat look is set independently using the existing Header.Flat property.

4. [New][Change][Enhancement] The EHeaderAutoHeightFlags enumeration contains the new
igHAHOnFontsChange flag to specify that iGrid should auto-height its header when one of the fonts
used in it (Header.Font, Header.SortInfoFont) is changed. This flag was added to the default value of
the Header.AutoHeightFlags property.

5. [Enhancement] iGrid supports autoscrolling for interactive column reordering: the grid is automatically
scrolled in the horizontal direction when the column header of the currently dragged column is moved
outside of the grid control. The speed of scrolling depends on the distance from the cursor to the
corresponding grid edge – the more the distance, the faster the speed.

This automatic scrolling helps users to place columns in desired positions in wide grids much faster as
column dragging operation is not limited by the viewport.

The same progressive autoscrolling approach was implemented for the drag select operation when the
user is selecting a rectangular block of cells holding down the mouse button in multiselection mode. The
previous versions of iGrid allowed the user to scroll the grid only with a constant speed in this case.

New tools to control modifications in iGrid

The set of built-in tools the user can use to modify iGrid and the corresponding iGrid members were revised
in this release. As a result, new members were introduced. The names of the new properties start with
“Allow”, which helps the developer to find these properties related to user interaction easier.

1. [New] The new Boolean property AllowSorting can be used to disable interactive sorting of the grid.
When the default value of this property, True, is changed to False, column sorting is no longer
performed when the user clicks a column header. The sort commands are also excluded from the built-
in column header context menu.

The new similar Boolean AllowGrouping property is used to disable interactive grouping, which can be
done from the built-in context menu for column headers.

Note that you can disable both operations or only one of them. This allows your users group iGrid
without sorting. In this new mode group rows are created without changing the order of rows, and iGrid

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 11 of 16

can have groups with repeated values. This can be useful in some situations – for instance, if you need
to analyze a long list of records ordered chronologically if the row order change is not desirable.

The Group method also has the corresponding new parameter to implement grouping without sorting
from code:

Sub Group(Optional ByVal bAllowSorting As Boolean = True)

Pay attention to the fact that you can also disable column sorting when the user clicks column headers if
you set the Header.Buttons property to False. However in this case the column headers become non-
clickable buttons and the built-in column header context menu with the sort/group commands is still
available for the user.

2. [New][Enhancement][Code-upgrade] In the previous versions the user can edit the contents of group
rows if the developer did not write an event handler of the RequestEdit event to prohibit this action.
However, in the vast majority of cases group rows editing should be disabled by default, and this is true
in the new iGrid. Now you need to allow editing in group rows explicitly using the new Boolean
AllowGroupRowEditing property, which is set to False by default.

3. [Enhancement] If the sort type of a column is set to igSortNone, the sort and group commands in the
built-in column header context menu become disabled for this column.

Other changes and enhancements

1. [New][Enhancement][Removed][Code-Upgrade] In the previous versions, the combination of the
Appearance and BorderStyle properties defined the look of the iGrid border. There were 6 possible
combinations of the values of these properties, but they gave only 4 different border types and in some
cases the result was non-intuitive. These properties no longer exist, and their functionality was
combined into one new property called BorderType.

The new property accepts one of the values from the new EBorderType enumeration type:

Enum EBorderType

 igBorderNone = 0

 igBorderThinFlat = 1

 igBorderThin3D = 2

 igBorderThick3D = 3

End Enum

The following table lists all combinations of the Appearance and BorderStyle property values and the
corresponding value from the new BorderType property:

BorderStyle Appearance BorderType

igBorder3D igAppearance3D igBorderThick3D

igBorder3D igAppearanceFlat igBorderThinFlat

igBorderThin igAppearance3D igBorderThin3D

igBorderThin igAppearanceFlat igBorderThinFlat

igBorderNone igAppearance3D igBorderNone

igBorderNone igAppearanceFlat igBorderNone

2. [New] The new RowVisibleIndex property returns the visible order number of the specified row. If a
row is hidden, this property returns 0 for it. The similar property for columns, ColVisibleIndex, was
implemented.

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 12 of 16

3. [New] This release of iGrid provides you with the new method named GetOptimalCellHeight:

Function GetOptimalCellHeight(_

 Optional ByVal lTextLineCount As Long = 1, _

 Optional ByVal btImageList As Byte = 0, _

 Optional ByVal btExtraImageList As Byte = 0, _

 Optional ByVal eIconToText As ECellIconToText = igCellIconToTextLeft, _

 Optional ByVal bCheckVisible As Boolean = False, _

 Optional ByVal eCheckPos As ECellCheckPos = igCheckPosLeft, _

 Optional ByVal bComboButton As Boolean = False, _

 Optional ByVal btIndentTop As Byte = 0, _

 Optional ByVal btIndentBottom As Byte = 0, _

 Optional ByVal oFont As StdFont = Nothing, _

 Optional ByVal bHGridLineAllowed As Boolean = True _

) As Long

This method is extremely useful if you need to set the default row height to the minimal value that is
enough to display the contents of your future cells without clipping before you add new rows to the
grid. Generally you call this method after you have made all grid settings using its properties (like Font,
GridLines, FocusRect, etc.) but before you create rows:

iGrid1.DefaultRowHeight = iGrid1.GetOptimalCellHeight()

The new method allows you to estimate the optimal height of the iGrid cell using its typical constituent
items – such as text, icons, combo button. You specify these parts using the optional parameters of the
GetOptimalCellHeight method.

This method works similar to the AutoHeightRow method, but there is one important difference.
AutoHeightRow works with real cells, whereas GetOptimalCellHeight calculates the best height using a
virtual cell.

Another important point related to this method is that it takes into account the current OS font setting
(custom DPI scaling), which allows you to create scale-independent grids.

4. [New][Code-Upgrade] The AfterCommitEdit event was supplemented with the new vOldValue
parameter that contains the previous cell value before it has been changed:

Event AfterCommitEdit(ByVal lRow As Long, ByVal lCol As Long, _

 ByVal vOldValue As Variant)

Having this value, you can compare it with the new value of the cell returned by the CellValue property
and perform or do not perform some operations (for instance, update the underlying database if a field
in a table has been really changed).

5. [New] The new AfterCellCheckChange event is raised after the user has changed the state of cell check
box. It works like the AfterCommitEdit event in the cell value change operation, but its purpose is to
provide you with the similar functionality for cell check box controls that are not bound to cell values.
The event has the following syntax:

Event AfterCellCheckChange(ByVal lRow As Long, ByVal lCol As Long, _

 ByVal eOldCheckState As ECellCheckState)

The event has the eOldCheckState parameter for the commonality with the AfterCommitEdit event. It
can be used to determine whether the check state has been really changed (the new value can be
provided by the developer in the CellCheckChange event, and it may equal the current check state).

6. [New] iGrid raises the new InputValidationError event when it is about to display the built-in Input
Validation message box, which is displayed if a new cell value cannot be coerced to the type of the
current cell value. The event has the following syntax:

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 13 of 16

Event InputValidationError(ByVal lConvErr As Long, ByRef sErrDescr As String)

The lConvErr parameter contains the corresponding Visual Basic error code generated while applying
one of the VB CInt(), CDbl(), CDate(), etc. functions to the new string representation of the cell value.
The sErrDescr parameter contains the error description that will be displayed in the built-in Input
Validation message box.

The second parameter is passed by reference, which gives you the ability to change it before it will be
displayed to the user. You can use this feature to provide a more detailed description of the problem for
the user, or to localize it.

7. [New][Change][Code-Upgrade] The two new events you can use to track row and column change were
implemented:

Event CurRowChange(ByVal lNewRowIfAny As Long, ByVal lOldRowIfAny As Long)

Event CurColChange(ByVal lNewColIfAny As Long, ByVal lOldColIfAny As Long)

The parameters of the events allow you to know the new and previously selected row/column. The
CurCellChange event was also supplemented with the new parameters containing the row and column
index of the previously selected cell, and its existing lRowIfAny and lColIfAny parameters were renamed
to indicate that these parameters contain the row and column index of the new current cell:

Event CurCellChange(ByVal lNewRowIfAny As Long, ByVal lNewColIfAny As Long, _

 ByVal lOldRowIfAny As Long, ByVal lOldColIfAny As Long)

8. [New] The optional lMaximumHeight parameter was added to the AutoHeightRow method. The
optional lMaximumWidth parameter was added to the AutoWidthCol method.

9. [New] The new read-only Boolean IsEditing property indicates whether a cell is being edited at the
moment. Note that this property can return True not only for text box cells, but for combo box cells as
well (if a combo list is opened when you access this property).

10. [New] The read-only Boolean property IsFocused was added. It indicates whether iGrid has the input
focus. The value of this property can be used, for instance, in cell custom drawing routines to know how
to highlight selected cells depending on the grid focused state.

11. [New] The two new properties, GridLineThicknessH and GridLineThicknessV, can be used to set or
retrieve the thickness of the horizontal and vertical grid lines respectively. These properties accept Long
values not less than 1.

12. [New] The missing ComboObject.ItemIcon property to read/set the index of a combo list item icon was
implemented.

13. [Change][Enhancement] When the HighlightSelIcons property is set to True and iGrid should highlight
the icons in selected cells, the color from the HighlightBackColor property is used for the highlight
effect instead of the black color in the previous versions.

If the Header.HotTrackFlags property contains the igHdrHotIcon flag and iGrid should highlight the icon
in the column header under the mouse pointer, the Header.HotTrackForeColor color is used for the
highlight effect instead of the system window default background color (which is white in the vast
majority of cases).

Both improvements give you a more consistent look in the hot column header and selected cells.

14. [Enhancement][Code-Upgrade] The Long lStartRow parameter of the FindSearchMatchRow method
was converted into the Variant vStartRow parameter, which allows you to pass the numerical index or
string key of a row like you can do that in any other member expecting a reference to a row.

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 14 of 16

15. [New][Code-Upgrade] In the previous builds of iGrid the AutoWidthCol and AutoHeightRow methods
processed cells only visible by the user at the moment (note that cells in collapsed group rows or cells in
columns with width equal to 0 were excluded). Sometimes the developer needs to process all cells, or
process all cells in visible rows/columns without excluding cells hidden interactively by collapsing group
rows or sizing a column to the width of 0. To specify explicitly what cells should be processed, use the
new eCellVisibility parameter of these methods:

Sub AutoWidthCol(_

 ByVal vCol As Variant, _

 Optional ByVal lMinimumWidth As Long = -1, _

 Optional ByVal lMaximumWidth As Long = -1, _

 Optional ByVal eCellVisibility As ECellVisibilityFilter = _

 igCellVisCurrentlyVisible)

Sub AutoHeightRow(_

 ByVal vRow As Variant, _

 Optional ByVal lMinimumHeight As Long = -1, _

 Optional ByVal lMaximumHeight As Long = -1, _

 Optional ByVal eCellVisibility As ECellVisibilityFilter = _

 igCellVisCurrentlyVisible)

The eCellVisibility parameter accepts one of the values of the new ECellVisibilityFilter enumeration:

Public Enum ECellVisibilityFilter

 igCellVisAllCells = 0

 igCellVisCurrentlyVisible = 1

 igCellVisVisibleProperty = 2

End Enum

The default value of the eCellVisibility parameter in these two methods corresponds the behavior in the
previous versions of iGrid.

The FindSearchMatchRow method had the bVisibleRowsOnly Boolean parameter to control whether to
process currently invisible cells, but it did not allow the developer to include cells hidden interactively
into the search. To provide this functionality, the bVisibleRowsOnly parameter was replaced with the
eCellVisibility parameter of the ECellVisibilityFilter type:

Function FindSearchMatchRow(_

 ByVal vSearchCol As Variant, _

 ByVal sSearchString As String, _

 Optional ByVal vStartRow As Varinat, _

 Optional ByVal bLoop As Boolean = False, _

 Optional ByVal eMatchMode As ESearchMatchMode = _

 igSearchMatchStartsWith, _

 Optional ByVal bMatchCase As Boolean = False, _

 Optional ByVal eCellVisibility As ECellVisibilityFilter = _

 igCellVisCurrentlyVisible _

) As Long

Pay attention to the fact that bVisibleRowsOnly parameter was the 4th parameter in the previous
version, but its new equivalent has been moved to the last position in this release. The fact is that
VB/VBA allows us to pass a Boolean value as the value of a parameter of an enumeration type. As a
result, this is not considered a compilation error, and existing code may work improperly with the new
version of iGrid and the developer will not get any warning from the compiler regarding that.

16. [Enhancement][Removed][New][Code-Upgrade] When you sorted iGrid in cell mode, it scrolled its
contents both in the vertical and horizontal direction if required to show the current cell in the
viewport. End users did not like that the grid was scrolled in the horizontal direction so the column they
sorted the grid by may have disappeared from the viewport if it did not contain the current cell.

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 15 of 16

In this version of iGrid the horizontal scrolling position is not changed after sorting – iGrid scrolls its
contents only in the vertical direction to ensure that the row containing the current cell remains in the
viewport. The SortScrollToCurCell property used to turn this behavior on/off in the previous versions
was renamed to SortScrollToCurRow to correspond to the new behavior.

17. [New] The CellEffectiveForeColor and CellEffectiveBackColor properties were implemented. These
read-only properties return the text color and background color used by iGrid when it draws the cell on
the screen. Note that these values are not the current values of the CellForeColor and CellBackColor
properties in the general case. The values returned by CellEffectiveForeColor and
CellEffectiveBackColor are based on all factors related to cell drawing (the CellForeColor and
CellBackColor properties, the CellDynamicFormatting and RowDynamicFormatting events, the
BackColorOddRows/BackColorEvenRows properties, etc.)

18. [New] The new InvertSelection method for inverting selection was implemented.

19. [Enhancement] The titles of the built-in “Paste Operation” and “Input Validation” message boxes were
capitalized according to the Microsoft Capitalization Guideline.

Fixed bugs

1. [Fixed] iGrid did not paint odd and even rows correctly with the colors from the BackColorOddRows and
BackColorEvenRows properties after changing the RowVisibleAsChild property.

2. [Fixed] The Sys(igSysRowsVisScrollCount) call did not return the correct value after changing the
RowVisible and RowHeight properties.

3. [Fixed] The CancelEdit event was not raised if the editing has been cancelled in the BeforeCommitEdit
event.

4. [Fixed] Setting the sort info font property (Header.SortInfoFont) changed the font of column header
text (Header.Font).

5. [Fixed] The grid did not update its vertical scroll bar correctly after changing the height of the header.

6. [Fixed] iGrid crashed if the user pressed the right mouse button in the no-cell area and then released it
when the mouse pointer was over a cell.

7. [Fixed] Problems with drawing column headers while doing interactive column reordering were fixed.

8. [Fixed] Bugs in the code used to draw the extra header part when visual styles were off were fixed.

9. [Fixed] The built-in cell and column header tooltips appeared very small (13x5 pixels) and empty if the
Large Fonts setting in the OS was turned on.

10. [Fixed] An unwanted horizontal gray line appeared in cell and column header tooltips in Windows 10.

11. [Fixed] The shadow around the cell and column header tooltips disappeared after the tooltip fade
animation was complete and the app did not use ComCtl32.dll of the version 6.0 or higher. In the
current version the shadow isn’t displayed during the animation as the system tooltips cannot use
shadow in this situation at all.

12. [Fixed] The mouse pointer flickered in the column divider area for columns that could not be resized
(their ColAllowSizing property was set to false).

13. [Fixed] Adding/removing rows dynamically before sorting in the BeforeContentsSorted event is
processed properly now.

14. [Fixed] The AutoHeightRow method did not take into account combo buttons in cells.

What's New in iGrid ActiveX 6.0 Release 2015-Nov-27

 Page 16 of 16

15. [Fixed] The cell text editor did not use the dynamic color and font settings made in the
CellDynamicFormatting and RowDynamicFormatting events.

16. [Fixed] The values of the CellBackColor and CellForeColor properties may have overwritten the cell
color settings made dynamically in the CellDynamicFormatting and RowDynamicFormatting events.

17. [Fixed] The igTextRTLReading text flag had no effect when the cell was in edit mode.

18. [Fixed] Missing descriptions of iGrid members for Object browsers were added.

	Revamped context menu system
	Combo cells: text editing and other improvements
	Loading cell values from/into arrays
	Changes related to the clipboard operations and the DELETE key
	Changes in font properties
	Windows 10 and new header features
	New tools to control modifications in iGrid
	Other changes and enhancements
	Fixed bugs

